スポンサーリンク




工業力学 機械工学

工業力学 11章 解答解説

11.1

角速度ωは$$ω = 2πf = 2π\frac{1}{T} = 4π$$

よって$$v = rω = 0.1*4π = 1.257[m/s]$$
$$\begin{align*}
F
&= mrω^2 \\
&= 2*0.1*(4π)^2 \\
&= 31.6[N]
\end{align*}$$

11.2

$$T = 2π\sqrt{\frac{l}{g}}$$より周期を2倍にするためには長さlを4倍にすればよい

11.3

気球が上昇していない場合$$T_{1} = 2π\sqrt{\frac{l}{g}}$$加速度aで上昇している場合$$T_{2} = 2π\sqrt{\frac{l}{g+a}}$$よって$$T_{2} = 0.911322*T_{1}$$これより加速度aで上昇している気球の振り子時計は1時間に$$0.91132*3600 = 3280.75…$$秒を刻むから1時間当たり3600-3280 = 320[s]だけ進む。

11.4

A,B地点の重力、周期をそれぞれg_A、g_B、T_A、T_Bとすると$$T_{A} = 2π\sqrt{\frac{l}{g_A}} , T_{B} = 2π\sqrt{\frac{l}{g_B}}$$よって$$\frac{24*60*60+60}{24*60*60} = \frac{T_{B}}{T_{A}} = \sqrt{\frac{g_A}{g_B}}$$よって

$$\frac{g_A}{g_B} = (\frac{24*60*60+60}{24*60*60})^2 = \frac{1}{0.998612}$$

11.5

$$T = 2\pi \sqrt{\frac{m}{k}}$$より、重さを2倍にすると周期は√2倍

11.6

ばね定数をkとして力のつり合いより$$Mg = kx$$$$k = 196[N/m]$$よって$$T = 2π\sqrt{\frac{1}{196}} = \frac{1}{7}π = 0.449[s]$$

11.7

直列:

$$k = \frac{k_{1}k_{2}}{k_{1}+k_{2}} = \frac{5*10^7}{15000} = 3333[N/m]$$
$$T = 2\pi \sqrt{\frac{m}{k}} = 2\pi \sqrt{\frac{20}{3333}} = 0.49[s]$$

並列:$$k = 15000[N/m]$$

$$T = 2\pi \sqrt{\frac{m}{k}} = 2\pi \sqrt{\frac{20}{15000}} = 0.23[s]$$

11.8

密度をρとする。

鉄球の質量は

$$M = ρ\frac{4}{3}πr^3 = 7200*\frac{4}{3}π*0.05^3 = \frac{6}{5}π[kg]$$

鉄球の慣性モーメントは$$I = \frac{2}{5}Mr^2 = 3.769911*10^{-3}$$

$$T = 2π\sqrt{\frac{I}{C}}$$より$$C = I(\frac{2π}{T})^2 = 0.0372075…$$

よって物体の慣性モーメントは

$$2.5 = 2\pi \sqrt{\frac{I}{0.0372075…}}$$より$$I = (\frac{2.5}{2π})^{2}*0.0372075… = 5.89*10^{-3}[kg*m^2]$$

11.9

振動数fは$$f = \frac{1}{2π}\sqrt{\frac{g}{h}} = 1.114[rps]$$よって回転数は$$f*60 = 66.9[rpm]$$

11.10

120[rpm],100[rpm]のときの高さをそれぞれh_1,h_2とすると$$2 = \frac{1}{2\pi}\sqrt{\frac{g}{h_1}}$$$$\frac{5}{3} = \frac{1}{2\pi}\sqrt{\frac{g}{h_2}}$$

整理して

$$h_{1} = \frac{g}{16\pi ^2} , h_{2} = g(\frac{3}{10\pi})^2$$

$$h_{2} - h_{1} = 0.0273[m] = 2.73[cm]$$

11.11

棒の重心周りの慣性モーメントは$$I_{g} = \frac{1}{12}ml^2$$

中心からの距離hでの慣性モーメントは$$I_{0} = mh^2 + I_{g} = mh^2 + \frac{1}{12}ml^2$$

実態振り子の周期の式$$T = \frac{2\pi}{\omega} = 2\pi \sqrt{\frac{I_{0}}{mgh}}$$

$$\frac{T}{2\pi} = \sqrt{\frac{mh^2 + \frac{1}{12}ml^2}{mgh}}$$

$$(\frac{T}{2\pi})^2 = \frac{h^2 + \frac{l^2}{12}}{gh}$$

$$h^2 - (\frac{T}{2\pi})^2 gh + \frac{l^2}{12} = 0$$

$$h^2 - \frac{9.81}{\pi ^2} + \frac{1.5^2}{12} = 0$$

$$\begin{align*}
h
&= \frac{\frac{9.81}{\pi ^2}\pm \sqrt{(\frac{9.81}{\pi})^2} - \frac{1.5^2}{3}}{2}\\
&= 0.253 , 0.741[m]\\
&= 25.3 , 74.1[cm]
\end{align*}$$

 

解答解説一覧へ戻る

スポンサーリンク




-工業力学, 機械工学

Copyright© どめブログ , 2021 All Rights Reserved.